

IPv6-only and dual stack in one network

Ondřej Caletka | 26 October 2022 | RIPE 85 IPv6 WG

Deploying IPv6-mostly access networks

The best transition mechanism

- IPv4-only and IPv6-only resources directly accessible
- IPv6 preferred for dual-stack resources
- Problems with IPv6 masked by Happy Eyeballs algorithm
- But it does not address IPv4 scarcity

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

Dual Stack

2

NAT64 allows IPv6-only networks

- IPv6 accessible natively
- IPv4 is translated into part of IPv6 address space
- Together with **DNS64**, everything seems to be accessible over IPv6
- But sometimes you run into...
 - **IPv4** literals
 - Legacy software opening IPv4-only sockets
 - Dual-stack servers with broken IPv6

Mobiles are ready

- Apple forces all iOS apps to work well on IPv6-only networks with NAT64
- There is Happy Eyeballs 2.0 for IPv4 literals or broken IPv6 on dual stack servers
- Finally CLAT is used for tethering to a computer
- Android uses just CLAT (464XLAT)
 - so IPv4 is accessible via two translations

Desktops suffer on IPv6-only

- No Happy Eyeballs 2.0 implementation outside Apple
 - and even on Apple, only high-level APIs support it (eg. Safari, not Chrome)
- No CLAT in Windows, Linux or ChromeOS
- Well known small problems:
 - Legacy applications using IPv4-only sockets
 - IPv4 literals do not work
 - Dual-stack servers where IPv6 is broken do not work
 - Legacy Happy Eyeballs doesn't help since there's no IPv4 to fall back to
 - Most corporate VPNs do not work (often *just* a configuration issue)

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

5

Can we do IPv6-only? At least for some devices...

IPv6-only Preferred option of DHCP

Using DHCP to turn IPv4 off

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

(RFC 8925)

Is DHCP option 108 already deployed?

You bet! Option 108 is requested by recent:

Devices are ready, networks are lagging behind.

But what about macOS?

- It allows you to run any software including those using legacy IPv only APIs
- Pure IPv6-only would break such applications
- It turned out there is CLAT in macOS too!
 - It gets activated by DHCP Option 108 together with RA Option PREF64

e	
	🔹 \prec ifconfig en0
	en0: flags=8963 <up,broadcast,smart,running,promisc,simplex,multicast> mtu 1500</up,broadcast,smart,running,promisc,simplex,multicast>
V4-	options=6463 <rxcsum,txcsum,ts04,ts06,channel_i0,partial_csum,zeroinvert< td=""></rxcsum,txcsum,ts04,ts06,channel_i0,partial_csum,zeroinvert<>
	ether f0:18:98:31:36:c6
	inet6 fe80::1477:9fe8:a21d:56a6%en0 prefixlen 64 secured scopeid 0x6
	inet6 2a02: :80:c48:6e99:5e6c:e453 prefixlen 64 autoconf secure
	<pre>inet6 2a02: :80:392d:6ea9:e5fd:ddd1 prefixlen 64 autoconf tempo</pre>
	inet6 fdba:91fa:4142:80:813:d49b:cca9:9b87 prefixlen 64 autoconf secure
oh	inet 192.0.0.1 netmask 0xfffffff broadcast 192.0.0.1
	inet6 fdba:91fa:4142:80:fa:bf88:9a02:cbb1 prefixlen 64 clat46
	nat64 prefix 64:ff9b:: prefixlen 96
	nd6 options=201 <performnud,dad></performnud,dad>
	media: autoselect
	status: active
	→ ~ ping -c 5 1.1.1.1
	PING 1.1.1.1 (1.1.1.1): 56 data bytes
	64 bytes from 1.1.1.1: icmp_seq=0 ttl=56 time=5.045 ms
	64 bytes from 1.1.1.1: icmp_seq=1 ttl=56 time=10.375 ms
	64 bytes from 1.1.1.1: icmp_seq=2 ttl=56 time=11.156 ms
	64 bytes from 1.1.1.1: icmp_seq=3 ttl=56 time=10.977 ms
	64 bytes from 1.1.1.1: icmp_seq=4 ttl=56 time=10.280 ms
	1.1.1.1 ping statistics
	5 packets transmittea, 5 packets receivea, 0.0% packet Loss
	round-trip min/avg/max/stadev = 5.045/9.567/11.156/2.286 ms

PREF64 RA Option

- A Router Advertisement option carrying NAT64 prefix
- (dealing with IPv4 literals)
- Replaces NAT64 prefix discovery using DNS64 query for ipv4only.arpa (RFC 7050)
- Shares fate with other configuration parameters
 - can be trusted **a bit more** than DNS64
- Supported by recent Android, iOS and macOS

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

Needed for CLAT configuration, local DNS64 or Happy Eyeballs 2.0

NAT64 / PREF64

- PREF64 is sufficient to setup CLAT on all platforms
- In theory, DNS64 should be optional
 - This would force all IPv4 to go through the CLAT
 - Legacy clients would not be affected by DNS64

NAT64 / PREF64 / DNS64 / IPv4

- In practice, you have to use DNS64 for Safari and iOS
 - When DHCP option 108 is received, Safari and most iOS apps refuse to use any IPv4
 - Without DNS64, **IPv4 internet is invisible** to them
 - On iOS, CLAT is used mostly for VoWiFi and perhaps for tethering -
- You still need IPv4 and DHCP(v4)
 - For legacy devices and to trigger CLAT on Apple devices
 - The DHCP pool can be smaller, though

Running IPv6-mostly

DHCP option 108 is easy

- Native support in the latest Kea
- Most DHCP servers support defining custom options
 - for instance: dnsmasq -0 108,0:0:1:2c
 - the option value represents duration for which the IPv4 stack should be disabled -

- No special processing on the DHCP server side is required But there have to be free addresses in the IPv4 address pool
 - Otherwise the DHCP server will not respond

PREF64 RA option is harder

No custom RA option support in routers

- We already had this issue with Recursive DNS Server option, now we have it again -
- Router vendors should really implement custom options similar to DHCP
- There are patches for some software routers:
 - radvd (merged but unreleased)
 - FRR (pull request pending)
 - odhcpd (pull request pending)
 - rad (part of OpenBSD)

Surprises on macOS

If there are multiple network prefixes, CLAT picks up a single address from a random one, without considering ULA or deprecated prefixes

÷ ~	ifconfig	en0			
en0:	flags=896	53 <up,br< th=""><th>OADCAST,</th><th>, SMART ,</th><th>RUNNING</th></up,br<>	OADCAST,	, SMART ,	RUNNING
	option	ns=6463<	RXCSUM, 7	TXCSUM,	TSO4,TS
	ether	f0:18:98	8:31:36:	:c6	
	inet6	fe80::14	477:9fe8	8:a21d:	56a6%en
	inet6	2a02:		:80:c48	8:6e99:5
	inet6	2a02:		80:392	d:6ea9:
	inet6	fdba:91	fa:4142:	80:813	3:d49b:c
	inet 1	L92.0.0.1	1 netmas	sk Øxff	ffffff
	inet6	fdba:91 [.]	fa:4142:	:80:fa:	bf88:9a
	nat64	prefix (6 4: ff9b:	:: pref	[:] ixlen 9
	nd6 op	otions=20	01 <perf(< th=""><th>ORMNUD,</th><th>DAD></th></perf(<>	ORMNUD,	DAD>
	media	autose	lect		
	status	s: activo	е		

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

, PROMISC, SIMPLEX, MULTICAST> mtu 1500 506, CHANNEL_IO, PARTIAL_CSUM, ZEROINVERT_CSUM>

0 prefixlen 64 secured scopeid 0x6 e6c:e453 prefixlen 64 autoconf secured e5fd:ddd1 prefixlen 64 autoconf temporary ca9:9b87 prefixlen 64 autoconf secured broadcast 192.0.0.1 02:cbb1 prefixlen 64 clat46

17

Surprises on macOS

If user sets up a custom IPv4 DNS server address, DNS will not work, despite commands like host working normally

~ scutil --dns | head DNS configuration

resolver #1 search domain[0] : mtg.ripe.net nameserver[0] : 1.1.1.1 flags : Request A records, Request AAAA records : 0x00000002 (Reachable) reach

resolver #2 domain : local ~ host google.com google.com has address 172.217.168.238 google.com has IPv6 address 2a00:1450:400e:811::200e google.com mail is handled by 10 smtp.google.com. ~ ping google.com ping: cannot resolve google.com: Unknown host

Surprises on macOS

When CLAT is active, the order of getaddrinfo(3) output is altered so IPv4 (via CLAT) is preferred over native IPv6

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

Fixed in macOS 13.0 Ventura!

Summary

Pros

- Only one network to join
- No waste of IPv4 addresses for every single device

- Cool if you don't use NAT

- Even for dual-stack clients, the usage of IPv4 is minimal
 - DNS64 will force all IPv6-capable applications to use NAT64 instead of native IPv4

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

Cons

- Most complex network setup
- IPv4 still has to be deployed
- NAT64 is needed
- Problematic interoperability between dual-stack and IPv6only hosts within the network
 - Setting up a Chromecast from an Android phone is *impossible*

21

Some experience from RIPE 85

- Ca. 60 % of devices in the main network are running IPv6-only
- Biggest issue: custom DNS servers or disabled IPv6 on a Mac
- We see some people with Macs on the *legacy* network
- Cisco AnyConnect / OpenConnect VPN connects but data don't flow
- Printer prints like a charm!

Ondřej Caletka | RIPE 85 IPv6 WG | 26 October 2022

IT HELP DESK FAQ

No Internet on Apple devices?

Remove custom DNS servers

Or use IPv6 addresses for them

Make sure IPv6 is enabled

Apple devices are running IPv6-only on the main meeting network. In such a setup, their DNS resolver cannot reach custom configured IPv4 DNS servers.

Questions

Ondrej.Caletka@ripe.net opsmtg@ripe.net @ripencc

